860714 225 348+ 860715 XEWILIY 疾候 \$10715 シと気力学市り 平田屋 360820 子周海方 中科学了力学下 1 48

连续波扩散型氧-碘传能化学激光器模型

冯浩 庄琦

(中国科学院化学物理研究所)

提要:采用二维理论模型研究连续波扩散型氧-碘化学激光器的性能。假设主、 副气流间在侧向压力不变的情况下进行混合和反应,采用有限差分技术来求解偏微 分方程组,考察了比功率沿气流方向的变化以及O₂(¹d)浓度对比功率的影响。

Two-dimensional theoretical model for diffusional CW oxygen-iodine chemical lasers

Feng Hao, Zhuang Qi

(Dalian Institute of Chemical Physics, Academia Sinica, Dalian)

Abstract: A two-dimensional theoretical model for predicting the diffusional CW oxygeniodine laser performances is presented. The parallel mixing at constant lateral pressure between a pair of primary and secondary streams is assumed. A set of parabolic partial differential equations are solved using the finite-difference techniques. The change of specific power with flow direction and the effect of the concentration of $O_2(^1\Delta)$ on specific power are studied.

一、前 言

氧-碘传能化学激光器^(1,3)是利用反应 $O_2(^{1}\Delta) + O_2(^{1}\Delta) \longrightarrow O_2(^{1}\Sigma) + O_2(^{3}\Sigma)$ $I_2 + O_2(^{1}\Sigma) \longrightarrow 2I(^{2}P_{3/2}) + O_2(^{3}\Sigma)$ $O_2(^{1}\Delta) + I(^{2}P_{3/2}) \longrightarrow I(^{2}P_{1/2}) + O_2(^{3}\Sigma)$ 获得激发态的 $I(^{2}P_{1/2})$,并使之受激发射:

 $I({}^{2}P_{1/2}) \xrightarrow{h\nu} I({}^{2}P_{3/2}) + h\nu$ 得到 1.315 µm 的激光输出, 一般让主、副两 • 646 • 股气流分别注入O₂(¹Δ)加O₂(³Σ)和I₂加 Ar的方法(图1)来达到目的。但有关连续 波氧-碘激光的模型研究却不多,且是简化模 型。本文采用二维混合模型对上述激光器进 行了理论计算。

二、基本化学动力学 过程及数学模型

本模型考虑了如下化学动力学过程:

收稿日期:1986年7月14日。

化学动力学过程	反应速率系数 $k_i (\text{cm}^3 \cdot \text{mol}^{-1})^N \text{s}^{-1}$	来源
$I + O_2^* \longrightarrow I^* + O_2$	$k_1 = 4.6 \times 10^{18}$	[4]
$I^* + O_2 \longrightarrow I + O_2^*$	$k_2 = 6.2 \times 10^{13} \exp\left(-\frac{396}{T}\right)$	[4]
$1^* + O_2^* \longrightarrow I + O_2^{**}$	$k_3 \!=\! 2.3 \! imes \! 10^{11} \exp\!\left(-rac{390}{T} ight)$	[4]
$2 O_2^* \longrightarrow O_2^{**} + O_2$	$k_4 = 4.2 \times 10^7 \exp\left(-\frac{390}{T}\right)$	[4]
$O_2^{**} + I_2 \longrightarrow O_2^- 2I$	$k_5 = 5.7 imes 10^{13} \exp\left(rac{265}{T} ight)$	[4]
$I^* + O_2 \longrightarrow I - O_2$	$k_6 = 1.1 imes 10^7 \exp \Bigl(rac{1650}{T} \Bigr)$	[4]
$I^* + I_2 \longrightarrow I + I_2$	$k_7 \!=\! 7.8 \! imes \! 10^9 \exp\!\left(rac{1650}{T} ight)$	[4]
$I^* + He \longrightarrow I + He$	$k_8 \!=\! 1.2 \! imes \! 10^4 \exp\!\left(rac{1650}{T} ight)$	[4]
$O_2^* + O_2 \longrightarrow O_2 + O_2$	$k_9 = 4.2 \times 10^{13} \exp\left(-\frac{5300}{T}\right)$	[3]
$O_2^* + I \longrightarrow O_2 + I$	$k_{10} = 4.6 imes 10^{13} \exp\left(-rac{2600}{T} ight)$	[4]
$O_2^* + He \longrightarrow O_2 + He$	$k_{11} \!=\! 6.0 \! imes \! 10^{13} \exp\!\left(-rac{7000}{T} ight)$	[4]
$O_2^{**} + O_2 \longrightarrow O_2 + O_2$	$k_{12} \!=\! 4.2 \! imes \! 10^{13} \exp\!\left(-rac{4300}{T} ight)$	[5]
$O_2^{**} + \operatorname{He} \longrightarrow O_2^* + \operatorname{He}$	$k_{13} \!=\! 6.3 \! imes \! 10^{13} \exp\!\left(-rac{4900}{T} ight)$	[4]
$O_2^{**} + I_2 \longrightarrow O_2 + I_2$	$k_{14} = 5.7 \times 10^{13} \exp\left(-\frac{780}{T} ight)$	[4]
$2I + O_2 \longrightarrow I_2 + O_2$	$k_{15}\!=\!7.3\! imes\!10^{13}\exp\!\left(rac{1600}{T} ight)$	[3]
$2\mathbf{I}\!+\!\mathbf{I_2}\!\longrightarrow\!\mathbf{I_2}\!+\!\mathbf{I_2}$	$k_{16} = 4.0 imes 10^{32} T^{-5.9}$	[4]
$2\mathrm{I}\!+\!\mathrm{He}\longrightarrow\mathrm{I}_2\!+\!\mathrm{He}$	$k_{17} = 3 \times 10^{19} T^{-1.7}$	[4]
自发辐射和受激辐射:	~10 //// (一) (一) (一) (一) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
$I^* \xrightarrow{A_{21}} I + h\nu$	$A_{21} = 6.0 \mathrm{s}^{-1}$	[4]

在建立数学模型时,采用如下基本假设:

1. 光学谐振腔(简称光腔)内气流为二 维层流;

2. 气体流动过程中,激射方向无压力梯 度;

3. 气流为完全气体:

4. 只考虑 I(²P_{1/2}) 的能级跃迁。

气流流动方向为 x 坐标, 激射方向为 y

坐标。控制方程为:

$$\frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} = 0 \qquad (1)$$

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y}$$

$$= -\frac{\partial P}{\partial x} + \frac{\partial}{\partial u} \left(\mu \frac{\partial u}{\partial y}\right) \qquad (2)$$

坊制方理为

O₂ 代表 O₂(14), O₂^{**} 代表 O₂(12), O₂ 代表 O₂(32), I* 代表 I (²P_{1/2}), I 代表 I (²P_{3/2}), I₂ 代表 I₂(¹Σ)。

图1 连续波氧-碘化学激光装置简图

$$\rho u \frac{\partial C_{\mathbf{I}^{*}}}{\partial x} + \rho v \frac{\partial C_{\mathbf{I}^{*}}}{\partial y}$$

$$= \frac{\partial}{\partial y} \left(\frac{L_{e}}{P_{r}} \cdot \frac{\partial C_{\mathbf{I}^{*}}}{\partial y} \right) + \dot{W}_{\mathbf{I}^{*}} - \frac{\alpha I}{s} \quad (3.1)$$

$$\rho u \frac{\partial C_{\mathbf{I}}}{\partial x} + \rho v \frac{\partial C_{\mathbf{I}}}{\partial y}$$

$$= \frac{\partial}{\partial y} \left(\frac{L_{e}}{P_{r}} \cdot \frac{\partial C_{\mathbf{I}}}{\partial y} \right) + \dot{W}_{\mathbf{I}} + \frac{\alpha I}{s} \quad (3.2)$$

$$\rho u \frac{\partial C_{i}}{\partial x} + \rho v \frac{\partial C_{i}}{\partial y} = \frac{\partial}{\partial y} \left(\frac{L_{e}}{P_{r}} \cdot \frac{\partial C_{i}}{\partial y} \right) + \dot{W}_{i}$$

$$(\ddagger \oplus \mathbf{i} = 3, 4, 5, 6, 7)$$

$$(3.3)$$

$$\begin{aligned} \rho v C_{p} \frac{\partial T}{\partial x} + \rho v C_{p} \frac{\partial T}{\partial y} \\ &= u \frac{dP}{dx} - \sum_{j=1}^{7} h_{j} \dot{W}_{j} + \frac{\partial}{\partial y} \left(\frac{\mu}{P_{r}} C_{p} \frac{\partial T}{\partial y} \right) \\ &+ \mu \left[\left(\frac{\partial u}{\partial y} \right)^{2} + \frac{L_{e}}{P_{r}} \left(\frac{\partial T}{\partial y} \right) \\ &\times \sum_{j=1}^{7} C_{p_{j}} \frac{\partial C_{j}}{\partial y} \right] \end{aligned}$$

$$-(h_{\rm I}-h_{\rm I*}+\varepsilon)\frac{\alpha I}{\varepsilon} \tag{4}$$

$$P = \rho R \overline{I}' \sum_{j=1}^{7} C_j = \frac{\rho R T}{\overline{M}}$$
(5)

$$C_p = \sum_{j=1}^{n} C_{p_j}(T) C_j \tag{6}$$

$$\alpha = \frac{\lambda^2 A_{21}}{4\pi \Delta \nu_D} \sqrt{\frac{\ln 2}{\pi}} \cdot V(b) \cdot \rho N_0 \left(C_{\mathbf{I}} - \frac{C_I}{2} \right)$$
(7)

其中
$$b = \frac{\Delta \nu_L}{\Delta \nu_D} \sqrt{\ln 2}$$

 $V(b) = \exp(b^2) \cdot [1 - \operatorname{erf}(b)]$
 $\mu = (1.44 \times 10^{-5} T^{3/2}) / (T + 111)$ (

采用反射率分别为 r₁、r₂ 平面镜 光腔 结构, 不考虑镜子的吸收和窗口的存在, 阈值增益 为:

$$\alpha_{th} = -\frac{\ln r_1 r_2}{2L} \tag{9}$$

8)

选择主、副气流中心区域 (d₁+d₂) 内为 计算基元(图 2)。根据初始边界条件:

$$x=0; u=u(y), T=T(y), C_j=C_j(y)$$
(10)

$$y = 0 \quad \text{if} \quad y = d_1 + d_2;$$
$$\frac{\partial u}{\partial y} = \frac{\partial T}{\partial y} = \frac{\partial C_i}{\partial y} = 0 \quad (11)$$

和预先指定的光腔入口压力 P_{e} ,利用有限差 分技术,在计算机上对方程 (1)~(9) 求其数 值解,获得 x 处的增益 α 和光强 I 的数值。激 光输出的总功率 W 和比功率 σ 为:

$$W = \int_{x_{th}}^{x_o} 2n\alpha I (d_1 + d_2) Z_M dx \qquad (12)$$

$$\sigma = \int_{x_{th}}^{x_e} \alpha I(d_1 + d_2) Z_M dx/q \qquad (13)$$

式中,n—主、副"气流对"数,即总计算基元 数为2n; Z_{M} —光腔高度,计算时选 Z_{M} 为1 cm; q——计算基元流量。

三、计算结果及讨论

计算时选择如下参数:计算基元尺寸: $d_1=0.25$ cm, $d_2=0.02$ cm; 光腔阈值增益: $\alpha_{th}=0.1253 \times 10^{-3}$ cm⁻¹; 气流初始边界条

注: *i*(或 *j*)=1代表 I, *i*(或 *j*)=2代表 I*, *i*(或 *j*)=3、4、5、6、7分别代表 O₂、O₂、O₂、O₂、I₂、Ar 组分。

图 4 $O_2(^{1}\Delta)$ 和 $O_2(^{3}\Sigma)$ 之比对比功率的影响

件: $T_1 = T_2 = 300$ K, $P_e = 1$ Torr, 速度、浓度 见图 3、4。其它光谱学参数、热力学参数略。

1. 基元比功率 σ。沿气流方向的变化

主、副气流进入光腔区域后开始反应。当 x沿气流方向由零增长时,初期 $\alpha < \alpha_{th}$,无激 光输出;当 $\alpha = \alpha_{th}$ 时, $x = x_{th}$,开始有激光输 出,沿气流方向的输出功率W不断增加。当 再次出现 $\alpha < \alpha_{th}$ 时, $x = x_e$,激光输出终止,并 获得最大激光输出功率。图3考察了比功 率 σ_x 沿x方向的变化,且得到整个体系激光 输出的最大比功率 σ_o

2. O₂(¹Δ)对比功率 σ 的影响

由化学反应模型可见, O₂(¹*d*) 增加时, 获得激发态的 I(²P_{1/2}) 粒子数增多, 从而使 激光输出功率和比功率大大增加。由图4可 见,改变 $O_2({}^1d)/O_2({}^3\Sigma)$ 对比功率具有强烈的影响。

对张存浩教授的支持和指导,表示谢意。

参考文献

- R. F. Heidner III et al.; J. Phys. Chem., 1983, 87, 2348.
- [2] J. Bachar, S. Rosenwaks; Chem. Phys. Lett., 1983, 96, 526.
- [3] Л. Г. Виноградова и др.; Кван. электр., 1982, 9, №6, 1193.
- [4] G. E. Busel; IEEF J. Quant. Electr., 1981, QE-17, 1128.

附录: 公式符号说明

u, v: x, y 方向分速

- ρ: 密度
- P: 压力
- μ:粘性系数
- C₄:克分子-质量比浓度
- C1*: I(²P1/2)克分子-质量比浓度
- C1: I(²P3/2)克分子-质量比浓度

W,或W,:化学反应i或j组分的生成速率

- ₩1*: I(²P1/2)化学反应生成速率
- W1: I(2P3/2)化学反应生成速率

Le: Lewis 数,在此取为1

- Pr: Prandtl 数,在此取为1
- α: 增益系数

·ath: 阈值增益系数

- I: 光强
- 8:每摩尔光子能量

*C*_P, *C*_{Pi}: 比热

h_j, h_I, h_{I*}: 热焓

T:温度

R: 通用气体常数

M:平均分子量

λ: 波长

A21: 自发辐射系数

Δv_{D:} Doppler 线宽

V(b): Voigt 函数

- b. Doppler 线宽和 Lorentz 线宽比
- N:化学反应级数

No: Avogadro 数

erf(b):误差函数

W, σ: 总功率和比功率